
Chemical stabilization employs a variety of chemical processes in which the added materials will interact with the soil’s minerals and composition to improve its engineering properties. It can be subdivided into two primary techniques: mechanical and chemical stabilization. Improving soil properties by incorporating certain additives is known as soil stabilization. The results showed that the use of GS and CLS together reduced the carbon emissions by 6.57 and 7.7 times, compared to traditional stabilizers, such as cement and lime. Carbon footprint analyses were performed on the soil composition that would be best-suited for a typical homogenous earthen dam section. The soil hydraulic conductivity was reduced by 14%, and the coefficient of consolidation increased by 203% for 30% GS and 05% CLS.

A significant change was also observed in the consolidation characteristics, making them practically applicable.

Maximum improvements of 84% and 163% were observed in the cohesion and angles of internal friction, respectively. The amended stabilizers improved the shear parameters and consolidation characteristics at an optimum dosage of 30% GS and 0.5% CLS. Direct shear and consolidation tests were performed on the GS–CLS blended soil samples that were cured for 7 and 14 days. The considered dosages of GS were 30%, 40% and 50%, and those of the CLS were 0.25%, 0.5%, 1% and 1.5%. This study investigated the use of granite sand (GS) and calcium lignosulphonate (CLS) as sustainable stabilizers that could be blended with clayey soils. Existing soil stabilizers include lime and cement however, their environmental safety and sustainable use during stabilization have been receiving increasing attention in recent years.

When the quality of such composite soils is poor, ground improvement techniques must be adopted to withstand the design load of superstructure. Soil is a composite material of great interest to civil engineers.
